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Abstract. A simple and accurate analytical approximation for the structure factor of the one- 
component classical plasma (OCP) is proposed, based on the work of Chaturvedi and co- 
workers. The exact solution of the hard-core OCP model in the generalised mean-spherical 
approximation is used to construct the Pad6 approximants for the packing fraction rj and 
Yukawa tail parameter I from the conditions of thermodynamical consistency of the OCP 
structure factor and recent Monte Carlo simulations. The model provides the OCP structure 
factor in closed analytical form which is in a very good agreement with the Monte Carlo 
simulations of Galam and Hansen when the OCP coupling constant is in the region r > 20. 
The thermodynamic properties of liquid sodium near the melting point have been calculated 
with the OCP as a reference system in the variational method (called the OCPV method) and 
compared with the results of the hard-sphere variational method and the very accurate 
Weeks-Chandler-Andersen thermodynamic perturbation theory. The accuracy of the OCPV 
method appears to be sufficiently high for calculations of liquid metal properties under 
pressure. 

1. Introduction 

The calculation of thermodynamic properties for sp-bonded and transition liquid metals 
using the one-component classical plasma (OCP) as a reference system have been dis- 
cussed in recent years in [ 1-51 and in other works. The precision of the Gibbs-Bogolubov 
variational method used in the above-mentioned papers depends essentially on the 
accuracy of the description of the structure factor Sk and the thermodynamic properties 
of the reference system [6]). A stringent test on the structure factor of the reference 
system is its consistency with thermodynamic properties. This constraint can be taken 
into account for the OCP in the so-called generalised mean-spherical approximation 
(GMSA) from the analysis of the long-wavelength limit of the model structure-factor 
[7, 81. In 0 2 we shall briefly re-derive some GMSA results (Equations 5,6,12,15) obtained 
in [8] to clarify presentation and discussion. The problem is reduced to two coupled 
transcendental equations whose solutions we approximate with simple Pad6 approx- 
imants to get a useful explicit formula for the OCP structure-factor. 
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2. One-component classical plasma (OCP) in the generalised mean-spherical approxi- 
mation (GMSA) 

In the GMSA, the OCP soft core is replaced by a hard core with some diameter d [6- 
91. Then the radial and direct correlation functions h(r) and c ( r )  obey the following 
conditions 

h(r)  = -1 r < d  ( l a )  

c(r)  = - p z 2 e 2 / r  - p~~ exp( -Aor) / r  r > d  ( I b )  

where ze is the OCP charge and /3 = 1/T is the inverse temperature. The core region 
cannot be reached by particles in the GMSA. The c(r )  and h(r) are related by the known 
Ornstein-Zernike equation. 

The free parameters d ,  Bo and A. should be found from the fitting to the thermo- 
dynamic properties as discussed below, It is convenient to use dimensionless coordinate 
x = r / d  and momentum k = q d ,  so we rewrite (1) in the form 

x < l  

> 1 

h(x) = - 1 

c(x) = - lim [ y  exp( -px)/x] - B exp( -Ax)/x (2) 
P-+O 

where y = z2e2/d = r/2q1l3, the OCP coupling constant is equal to r = z 2 e 2 / i ,  i = 
(352/4n)lI3 is the mean distance between particles and q = 7cd3/6& = ( d / i ) ) / 8  is a 
packing fraction. Following [lo] we can factorise the Fourier transform of the direct 
correlation function (in the text below all Fourier transforms are indicated by a lower 
case subscript) 

1 - C k  = Q k Q - k .  (3) 
The function Qk have the known analytical properties [ 111 which lead to the following 

expressions [ 81 

Q k  = 1 - 12q loa dxexp(ikx)q(x) (4) 

( 5 )  

(6) 

q(x) = F(x) + lim [ A  exp( - px)] + b exp( -Ax) 

F(x) = [ p o  +p1x+p2x2  +p3x3 + w exp( -AX)]O(I -x). 

x > o  
v-0 

Here O(x)  = 1 when x > 0 and O(x) = 0 when x < 0. The supplementary relations 
for unknown coefficients should be found from Baxter’s equation [ l l ]  

-q(x) + J ( x )  - 1211 d t  q(t)J(lx - t l )  = 0 (7) lo’ 
where J(x) = J,” d t  th(t). 

manner. The structure factor of the system can be written in the form 
The condition of thermodynamical consistency can be introduced in the following 

S k  = 1/(1 - c k )  = I / / Q k I 2 .  (8) 
In the long-wavelength limit we have [ 121 

lim ( 1 / s k )  = K2/k2 -k X $ / X T  
k+ 0 (9) 

where = 24qy is the square of the Debye inverse screening length, xT is the OCP 
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compressibility and x: = T/Q is the ideal gas compressibility. The OCP internal energy 
U in GMSA can be found from the equations 

pu = 12qyI I = ib; dxxh(x). 

The OCP equation of state in GMSA is given by 

p/po = 1 + 4qg(l) + 4pU (11) 

where g(x) = 1 + h(x) and po = T/Q. Consequently we have the following conditions 
of self-consistency [8]: 

The subscript MC indicates the results taken from the Monte Carlo simulation in [13]. 
Constraints (12a) and (12b) give the proper equation of state for the OCP. From [13] we 
have 

= a, + bsr114 + c,r-1/4 + d , 
(13) ( x ; / x ~ ) ~ ~  = 1+ $a,T+ $b,T114 - &csr-1i4 + 4 d s  

where a, = -0.897744, b, = 0.95043, c, = 0.18956 and d, = -0.81487. After straight- 
forward but tedious algebra one can obtain from (7) the linear system for coefficients A , 
b,p,, p1,p2,p3 and w. Excluding these coefficients we get two transcendental equations 
for q and A as functions of r. 

The numerical solution of these equations were fitted by Pad6 approximants 

q = ( c l r+c2r3 l4  +c3r1i2 + ~ ~ ) / ( r + ~ ~ r ~ / ~  + ~ ~ r ~ / ~  + c 7 )  

A = (r - To)’12(dlr + d2r1I2 + d3)/(r  + d4r112 + d5). 

(14a) 

(14b) 

Here To = 19.55, cl-c7 are respectively 0.614944, -3.31353, 3.51334, -2.49714, 
-5.17022, 6.84416 and -36.7746, and dl-d5 are respectively -3.45004, 103.689, 
68.1194,29.1990 and 403.246. We have not found any reasonable solution below r = 
To. The accuracy of our approximation (14) is about in the region 60 < r < 180 and 
slightly lower outside this interval. 

The other coefficients can be found from the following sequence of relations 
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127yZ = a,F + b,T1I4 + c,r-lI4 + d ,  

where xi, y i  and zi (i = 1, . . . , 4 )  can be found from the following relations 

fl = [2 - ( 2  + 2A + A 2 )  exp( -A)]/2A2 f 2  = fl exp A/A 
hl = [l - (1 + A) exp( - A ) ] / A  

u1 = 2/A3 - (i + 1/A + 2/A2 + 2/A3)  exp( - A )  

u2 = [l - 127 expA (Zh, + h.41)]/A 

U1 = 1 + 2q - 127f2 

h2 = h l  exp A / A  

U 2  = 37(1 - 8 f 2 )  

~3 = 67(1 - 2/22) , U 4  = -2  + 8q(1 - 3h2) 

From (3)-(6) we can obtain the following expression for the structure factor 

Sk = ( k 2 / K 2 ) / ( f i  + k2R2/K2)  

where 

Tk = 1 -12q[kUk + bk2/ (k2  -t A 2 ) ] / K  Rk = 1 - 12q[vk f 6A/(k2 + A 2 ) ] ,  

Uk =pose +plsl + p 2 s 2  +p3s3 + w[k - exp( -A)(k cos k + A sin k ) ] / ( k 2  + A 2 )  

Vk =poco +plcl + p 2 c 2  +p3c3 + w[A + exp( -A)(k sin k - A  cos k ) ] / ( k 2  + A 2 )  

s, = dxx"  sin(kx) 
1 

c, = lo1 dxx"  cos(kx). 

3. Discussion 

The structure factor calculated in the present model is shown in figures 1 and 2 for the 
coupling constant values r = 20,40,70, 100, 160 and 178 compared with the results of 
Monte Carlo simulation in [14]. The agreement with the Monte Carlo results is very 
good and the relative accuracy of the present analytical Skis about 1 per cent in the range 
r > 100. It should be noted that the height of the first peak in the vicinity of the OCP 
freezing point (r, = 178) is 3.04 in correspondence with some simple criteria of freezing. 

The present Sk is accurate in long wavelength limit where k tends to zero as follows 
from equations (9) and (12b). Consequently, this behaviour provides a high accuracy of 
thermodynamic calculations within the variational method because the long wavelength 
region and the first peak of the structure factor contributes the major part of the 



Thermodynamic analysis of one-component classical plasma 3457 

i 
10 I 

5 
1 

qa 

I 

5 10 
q6 

Figure 1. The OCP structure-factor S, versus 
momentum qd for various values of the coupling 
constant r. Curve A, r = 20; curve B, r = 40; 
curve C, r = 70. Data points: Monte Carlo simu- 
lation of [ 141. 

Figure 2. The OCP structure factor S, versus 
momentum qd for various other values of the 
coupling constant r. Curve A, r = 100; curve B, 
r = 160; curve C, r = 178. Data points: Monte 
Carlo simulation of [14]. 

Table 1 .  The computed thermodynamic properties for liquid sodium near its melting point. 

Internal 
thermal Bulk 

Thermal 
expansion 

energy Pressure modulus Entropy Heat capacity coefficient 
U* P B T  S c v  CP (YP 

Method (K) (kbar) (kbar) (kB)  (kid (kB) (10-4 K-I) 

HSVa 1521 1.94 51.5 7.25 3.74 4.39 3.38 
WCAa 1361 0.16 54.8 7.72 3.48 3.94 2.75 
OCPV 1381 -0.36 51.3 7.47 3.47 3.86 2.62 
Experimenta 1345 0 52.6 7.78 3.47 3.83 2.51 

a The experimental values and the results of HSV and WCA methods in the table are taken from [6]. 

free energy of liquid phase [6]. This is illustrated in table 1 where the results of such 
calculations with the OCP reference system (the OCPV method) are compared with other 
methods and experiments for liquid sodium near the melting point. The methods used 
are the variational one with the hard-sphere reference (HSV) and the thermodynamic 
perturbation theory of Weeks, Chandler and Andersen (WCA) [6]. The results presented 
in table 1 confirm the high accuracy of the OCPV method. There is only a minor difference 
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between the OCPV and WCA methods in calculation of the equation of state and entropy 
in the liquid phase. The underestimation of entropy S in comparison with experiment 
can be related to some inaccuracy in predicting the ‘softness’ of the inter-ionic potential 
in the system [6]. The accuracy of the ‘soft sphere’ approximation appears to be slightly 
less than in the OCPV method in the low pressure region [15, 161. In contrast to the WCA 
method, the accuracy of the variational method is as a rule less sensitive to the external 
parameters such as temperature and pressure [6,15]. Hence the OCPV method is per- 
spective for the computations in the high pressure region with accurate pseudopotentials. 
For instance, it enables one to calculate the melting characteristics of alkali metals up to 
very high pressures [15,17] and to investigate the universality of the OCPV in this region. 
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